$Mod(M^4)$ Minicourse: Exercises, 1

4-manifold topology

- 1. Work out the details of Markov's proof that (triangulable) 4-manifolds are not classifiable up to homeomorphism.
- 2. Prove that there are exactly two homeomorphism types of oriented S^2 -bundles M over S^2 , one of course being $S^2 \times S^2$. [Hint: Write the base S^2 as a union of two disks glued along their boundary $\alpha \cong S^1$. Show that M is determined by a homotopy class of maps $\alpha \to SO(3)$, and deduce the result.]
- 3. Work through the details of both proofs given in lecture that, in a 4-manifold M, each element $c \in H_2(M; \mathbb{Z})$ can be represented by an embedded surface.
- 4. (Intersection form basics) Let M be a closed, oriented 2n-manifold.
 - (a) Prove that the intersection forms on H^n and H_n given in lecture give (isometrically) isomorphic lattices.
 - (b) Prove that the intersection form Q_M on M is unimodular.
 - (c) Let \overline{M} denote M with the opposite orientation. Verify that

$$Q_{\bar{M}} \cong -Q_M.$$

(d) Let M_1 and M_2 be closed, oriented 2n-manifolds, and let M be their connect sum. Prove that

$$Q_M \cong Q_{M_1} \oplus Q_{M_2}.$$

- 5. (Intersection form examples) Compute the intersection form Q_M on $H_2(M;\mathbb{Z})/\text{torsion}$ for the following 4-manifolds.
 - (a) The 4-torus T^4 .
 - (b) The product $S_q \times S_h$ of two surfaces of genus g (resp. h).
 - (c) The nontrivial S^2 -bundle over S^2 .
- 6. (Monodromy and intersection form a simple example) Consider two disjoint, essential simple closed curves a, b on the genus 3 surface S_3 that are not homotopic but that are homologous; equivalently, the union $a \cup b$ bounds a subsurface. Let $f \in \text{Diff}^+(S_3)$ be the product of twists $f := T_a \circ T_b^{-1}$. Let

$$\rho: \pi_1(S_2) \to \mathbb{Z} \to \operatorname{Diff}^+(S_3)$$

be the homomorphism that takes a nonseparating, simple closed curve $\mu \subset S_2$ to f and that kills the other 3 homology classes in a standard basis for $H_1(S_2; \mathbb{Z})$ containing $[\mu]$. Let M be the S_3 -bundle over S_2 determined by ρ .

(a) Prove that $H^2(M;\mathbb{Z}) \cong H^2(S_2 \times S_3;\mathbb{Z})$ as abelian groups. [Note: This is easier if you know Leray's Theorem (see Hatcher) or spectral sequences.]

(b) Prove that the lattice $(H_2(M; \mathbb{Z}), Q_M)$ is not isomorphic to the lattice $H_2(S_2 \times S_3; \mathbb{Z})$ endowed with its intersection form. In particular M is not homotopy equivalent to $S_2 \times S_3$.

For much deeper and more interesting stuff in the direction of properties of the monodromy of a surface bundle versus the cup product structure on its cohomology, see papers by Nick Salter and Lei Chen.

- 7. (The Kummer manifold, I) Let A be a complex 2-torus $A := \mathbb{C}^2 / \Lambda$ where $\Lambda \cong \mathbb{Z}^4$ is the subgroup given by the \mathbb{Z} -span of four vectors in \mathbb{C}^2 that are linearly independent over \mathbb{R} . For example $\Lambda := \mathbb{Z}[i]^2$. Note that A is an abelian group under addition modulo Λ .
 - (a) Verify that the involution $\iota : A \to A$ defined by

$$\iota(z,w) := (-z,-w)$$

has precisely sixteen fixed points, corresponding to the sixteen 2-torsion points of A.

(b) Show that the quotient $A/\mathbb{Z}/2\mathbb{Z}$ by the group generated by ι is not a manifold.

(c) Let \tilde{M} be the (complex) blowup of A at its sixteen 2-torsion points. Verify that ι induces an action of $\mathbb{Z}/2\mathbb{Z}$ by diffeomorphisms on \tilde{M} .

(d) Prove that this $\mathbb{Z}/2\mathbb{Z}$ action on \tilde{M} is still not free, but that the quotient

$$M := M/(\mathbb{Z}/2\mathbb{Z})$$

is a smooth manifold.

(e) Prove that $H_2(M; \mathbb{Q}) \cong \mathbb{Q}^{22}$. [Hint: Recall transfer.]

(f) Let $\{e_1, \ldots, e_{16}\}$ denote the exceptional divisors in \tilde{M} , and let $\pi : \tilde{M} \to M$ denote the quotient map. Prove for each $1 \leq i \leq 16$ that $\pi(e_i)$ is an embedded 2-sphere in M, and that it has self-intersection number -2.

- 8. (The Kummer manifold, II) The purpose of this problem is to prove that the Kummer manifold M (notation from Problem 7) is a K3 surface; that is, it has the following two properties:
 - (a) Prove that $\pi_1(M) = 0$.

(b) Prove that M has a nowhere vanishing holomorphic 2-form. Note that $dz_1 \wedge dz_2$ is a globally defined, nowhere vanishing, holomorphic 2-form on A.

Quadratic forms

- 1. Prove that the lattice $(1) \oplus 9(-1)$ is (isometrically) isomorphic to the lattice $E_8(-1) \oplus (1) \oplus (-1)$. You are allowed to use the classification of indefinite lattices.
- 2. (Constructing Γ_{4m}). The purpose of this exercise is to construct a sequence of interesting positive-definite lattices. Fix $m \ge 1$, and let $\{e_1, \ldots, e_{4m}\}$ be the standard basis of \mathbb{R}^{4m} , equipped with the standard inner product. Let $\Gamma_{4m} \subset \mathbb{R}^{4m}$ be the \mathbb{Z} -span of the set of vectors $\{e_i + e_j\}$ and the vector $\frac{1}{2}(e_1 + \cdots + e_{4m})$.

- (a) Prove that Γ_{4m} , equipped with the restriction to Γ_{4m} of the standard inner product on \mathbb{R}^{4m} , is a unimodular lattice. [Hint: First consider the index of the \mathbb{Z} -span of $\{e_i + e_j\}$ in the \mathbb{Z} -span of $\{e_i\}$.
- (b) Prove that Γ_{4m} is an even lattice when m is even, and an odd lattice if m is odd.
- (c) Prove that for even $m \ge 2$, the signature of Γ_{4m} is 4m.
- (d) Prove that Γ_{4m} is *indecomposable*: it cannot be written as an orthogonal direct sum of two sublattices.
- (e) Prove that Γ_8 has exactly 240 elements v of minimal length; that is with $v^2 = -2$.
- 3. (a) Prove that Γ_{16} is not (isometrically) isomorphic to $\Gamma_8 \oplus \Gamma_8$. [Hint: prove that the set of vectors $v \in \Gamma_{16}$ with $v^2 = 2$ are exactly $\{\pm e_i \pm e_j : i \neq j\}$, and that these do not generate $\Gamma_1 6$. Prove that this set (in Γ_8) does generate Γ_8 .]

(b) Let U be the rank 2 hyperbolic lattice. Prove that $\Gamma_{16} \oplus U$ is (isometrically) isomorphic to $\Gamma_8 \oplus \Gamma_8 \oplus U$.