
Mod(M4) Minicourse: Exercises, 1

4-manifold topology

1. Work out the details of Markov’s proof that (triangulable) 4-manifolds are not classi-
fiable up to homeomorphism.

2. Prove that there are exactly two homeomorphism types of oriented S2-bundles M over
S2, one of course being S2 × S2. [Hint: Write the base S2 as a union of two disks
glued along their boundary α ∼= S1. Show that M is determined by a homotopy class
of maps α→ SO(3), and deduce the result.]

3. Work through the details of both proofs given in lecture that, in a 4-manifold M , each
element c ∈ H2(M ;Z) can be represented by an embedded surface.

4. (Intersection form basics) Let M be a closed, oriented 2n-manifold.

(a) Prove that the intersection forms on Hn and Hn given in lecture give (isometri-
cally) isomorphic lattices.

(b) Prove that the intersection form QM on M is unimodular.

(c) Let M̄ denote M with the opposite orientation. Verify that

QM̄
∼= −QM .

(d) Let M1 and M2 be closed, oriented 2n-manifolds, and let M be their connect sum.
Prove that

QM
∼= QM1 ⊕QM2 .

5. (Intersection form examples) Compute the intersection form QM on H2(M ;Z)/torsion
for the following 4-manifolds.

(a) The 4-torus T 4.

(b) The product Sg × Sh of two surfaces of genus g (resp. h).

(c) The nontrivial S2-bundle over S2.

6. (Monodromy and intersection form - a simple example) Consider two disjoint, essential
simple closed curves a, b on the genus 3 surface S3 that are not homotopic but that are
homologous; equivalently, the union a ∪ b bounds a subsurface. Let f ∈ Diff+(S3) be
the product of twists f := Ta ◦ T−1

b . Let

ρ : π1(S2)→ Z→ Diff+(S3)

be the homomorphism that takes a nonseparating, simple closed curve µ ⊂ S2 to f and
that kills the other 3 homology classes in a standard basis for H1(S2;Z) containing [µ].
Let M be the S3-bundle over S2 determined by ρ.

(a) Prove that H2(M ;Z) ∼= H2(S2 × S3;Z) as abelian groups. [Note: This is easier if
you know Leray’s Theorem (see Hatcher) or spectral sequences.]
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(b) Prove that the lattice (H2(M ;Z), QM ) is not isomorphic to the lattice H2(S2 ×
S3;Z) endowed with its intersection form. In particular M is not homotopy equiv-
alent to S2 × S3.

For much deeper and more interesting stuff in the direction of properties of the mon-
odromy of a surface bundle versus the cup product structure on its cohomology, see
papers by Nick Salter and Lei Chen.

7. (The Kummer manifold, I) Let A be a complex 2-torus A := C2/Λ where Λ ∼= Z4 is the
subgroup given by the Z-span of four vectors in C2 that are linearly independent over
R. For example Λ := Z[i]2. Note that A is an abelian group under addition modulo Λ.

(a) Verify that the involution ι : A→ A defined by

ι(z, w) := (−z,−w)

has precisely sixteen fixed points, corresponding to the sixteen 2-torsion points of A.

(b) Show that the quotient A/Z/2Z by the group generated by ι is not a manifold.

(c) Let M̃ be the (complex) blowup of A at its sixteen 2-torsion points. Verify that ι
induces an action of Z/2Z by diffeomorphisms on M̃ .

(d) Prove that this Z/2Z action on M̃ is still not free, but that the quotient

M := M̃/(Z/2Z)

is a smooth manifold.

(e) Prove that H2(M ;Q) ∼= Q22. [Hint: Recall transfer.]

(f) Let {e1, . . . , e16} denote the exceptional divisors in M̃ , and let π : M̃ →M denote
the quotient map. Prove for each 1 ≤ i ≤ 16 that π(ei) is an embedded 2-sphere in M ,
and that it has self-intersection number −2.

8. (The Kummer manifold, II) The purpose of this problem is to prove that the Kummer
manifold M (notation from Problem 7) is a K3 surface; that is, it has the following
two properties:

(a) Prove that π1(M) = 0.

(b) Prove that M has a nowhere vanishing holomorphic 2-form. Note that dz1 ∧ dz2 is
a globally defined, nowhere vanishing, holomorphic 2-form on A.

Quadratic forms

1. Prove that the lattice (1)⊕ 9(−1) is (isometrically) isomorphic to the lattice E8(−1)⊕
(1)⊕ (−1). You are allowed to use the classification of indefinite lattices.

2. (Constructing Γ4m). The purpose of this exercise is to construct a sequence of inter-
esting positive-definite lattices. Fix m ≥ 1, and let {e1, . . . , e4m} be the standard basis
of R4m, equipped with the standard inner product. Let Γ4m ⊂ R4m be the Z-span of
the set of vectors {ei + ej} and the vector 1

2(e1 + · · ·+ e4m).

2



(a) Prove that Γ4m, equipped with the restriction to Γ4m of the standard inner product
on R4m, is a unimodular lattice. [Hint: First consider the index of the Z-span of
{ei + ej} in the Z-span of {ei}.

(b) Prove that Γ4m is an even lattice when m is even, and an odd lattice if m is odd.

(c) Prove that for even m ≥ 2, the signature of Γ4m is 4m.

(d) Prove that Γ4m is indecomposable: it cannot be written as an orthogonal direct
sum of two sublattices.

(e) Prove that Γ8 has exactly 240 elements v of minimal length; that is with v2 = −2.

3. (a) Prove that Γ16 is not (isometrically) isomorphic to Γ8 ⊕ Γ8. [Hint: prove that the
set of vectors v ∈ Γ16 with v2 = 2 are exactly {±ei ± ej : i 6= j}, and that these do not
generate Γ16. Prove that this set (in Γ8) does generate Γ8.]

(b) Let U be the rank 2 hyperbolic lattice. Prove that Γ16 ⊕ U is (isometrically)
isomorphic to Γ8 ⊕ Γ8 ⊕ U .
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